Abstract

Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much less is known about its roles in adults, although functions in reproductive maturation have been described. In adult females, JH has been shown to regulate egg maturation and mating. To examine a role for JH in male reproductive behavior we created males with reduced levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for courtship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that could be rescued by application of Methoprene, a JH analog, shortly before the courtship assays were performed. In agreement with this, reducing JHAMT conditionally in mature flies led to courtship defects that were rescuable by Methoprene. The same result was also observed when the CA were conditionally ablated by the expression of a cellular toxin. Our findings demonstrate that JH plays an important physiological role in the regulation of male mating behavior.

Highlights

  • Effective male courtship behavior is essential for successful reproduction in most animals and the study of this behavior allows important insight into the regulation of complex behaviors

  • The results described here demonstrate that expression of an RNAi targeting Juvenile Hormone Acid O-Methyl Transferase (JHAMT), a key enzyme in the biosynthesis of Juvenile Hormone (JH), results in a reduction of male courtship

  • Consistent with this, we find that application of Methoprene, a JH analogue, is capable of rescuing the phenotype

Read more

Summary

Introduction

Effective male courtship behavior is essential for successful reproduction in most animals and the study of this behavior allows important insight into the regulation of complex behaviors. In Drosophila, the sex-specific circuits of brain neurons are not determined by sex hormones as it is in mammals, but cell-autonomously by a series of alternative splicing events that result in the generation of the two male-specific transcription factors Fruitless (FRU) and Doublesex (DSX). FRU and DSX are required to establish the neuronal competence of the circuits that are required for male courtship behavior [6, 8,9,10]. The adult fat body, a secretory tissue outside the brain, produces sex-specific factors that significantly contribute to normal mating behavior [11]. One of these factors, called Takeout, is secreted into the circulating hemolymph and has been shown to act in courtship as a secreted protein [12].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call