Abstract
The application of Bacillus thuringiensis (Bt) has brought environmental benefits and delayed resistance development of pests. Most studies focus on the Bt insecticidal activity against pests, however, the molecular mechanism of Bt on impairing the growth and development of Spodoptera exigua remains unknown. Here, we show that juvenile hormone (JH) inhibits the lipogenesis mediated by fatty acid synthases (Fas) of S. exigua in response to Bt infection. The weight and lipid accumulation of S. exigua larvae post Bt infection were less than those of larvae without Bt infection. We further demonstrated that Bt infection causes the JH titer with a significant increase, which downregulates the expression of lipogenesis-related genes, SeFas3, SeFas4, and SeFas5, resulting in the delayed development of S. exigua larvae. In addition, the expression levels of SeFas genes were regulated by SeACC, indicating that SeFas genes were modulated by multiple pathways. Our findings reveal that novel insights into the molecular mechanisms underlying the impaired development caused by Bt infection which can inform the development of strategies for the sustainable pest control in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.