Abstract
Hybrid laminates have been fabricated from randomly oriented jute fibre mats and woven glass fabrics with a common polyster resin matrix. Hand lay up techniques were used to simulate practical production methods in the field. A variety of laminate constructions were mechanically tested and some laminates were in addition assessed for environmental stability. Modified rule of mixtures expressions successfully predicted the tensile properties of the laminates and the jute plies were seen to control the failure of hybrid laminates at about 0.8% strain. Fracture toughness measurements of GIC andK IC indicate that hybrid laminates have maximum toughness (G IC ≈ 12 kJ m−2 when jute plies are sandwiched between glass fabric facings. All the hybrid laminates were found to be tough in impact, although here fabric plies used as the laminate core maximize the work of fracture at a value of approximately 45 kJ m−2. Hybrid laminates with jute facings are, as expected, least able to withstand hot moist environments. However, significant moisture uptake by the polyester resin matrix was measured for all laminates. Optical and scanning electron microscopy have been used to explain the mechanical performance and environmental resistance of the hybrid laminates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.