Abstract

Spatially engineered photons from spontaneous parametric down-conversion (SPDC) are a valuable tool for studying and applying photonic entanglement. An advantage of SPDC is that simple expressions for the two-photon state can be obtained using justified approximations. In particular, the thin-crystal approximation has often been invoked in the engineering of high-dimensional entangled states. Knowledge of the conditions under which the thin-crystal approximation remains valid is essential for the realization of experimental setups. We provide a quantitative guideline on the validity of the thin-crystal approximation in calculating the two-photon spatial state. In particular, we show that the applicability of this regime is related to the focusing parameter ${\overline{w}}_{p}={w}_{p}/\sqrt{{\ensuremath{\lambda}}_{p}\phantom{\rule{0.16em}{0ex}}L}$, where ${w}_{p}$ and ${\ensuremath{\lambda}}_{p}$ are the beam waist and wavelength of the pump beam, respectively, and $L$ is the length of the nonlinear crystal. Additionally, the validity of the thin-crystal regime is investigated concerning the size of a subspace in the Laguerre Gaussian basis, into which the two-photon state can be projected in a given experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.