Abstract

The discrete element method has recently become a popular tool for developing soil models to be used for modelling the tillage process, which involves using working tools. The research aims to evaluate the parameters of the contact model particles when modelling tillage with large–sized working tools using the discrete element method. The paper presents the results of calibration of the physico-mechanical parameters of the particles of the soil environment model described using the discrete element method. The model is used for modelling the tillage process using moldboard plow. The parameters of the simulated particles to be studied are the Poisson's ratio, coefficients of static and dynamic friction of particles, Young's modulus, surface energy, particles' diameter, coefficients of static and dynamic metal friction of particles. Calibration was carried out according to the horizontal, vertical and transverse components of the traction resistance of the plow body. The obtained dependences of the components of the plow body traction resistance on soil moisture and surface energy help select parameters for the Hertz-Mindlin contact model while modelling the behavior of the soil environment when interacting with the working tools of tillage and sowing machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call