Abstract
The objective of this paper is to justify the linear long-wave approximation used in the derivation of approximate equations for long waves on the free surface of a two-dimensional viscous fluid flow down an inclined plane. To the first order of a small parameter, the approximate equation is a heat equation, which becomes ill-posed if a Reynolds number R R is greater than some critical value R c {R_c} . To overcome this difficulty we consider a higher-order approximate equation, which is well-posed even if R > R c R > {R_c} , and show that the solution of the higher-order equation is an approximation to the solution of the linearized Navier-Stokes equations. The justification is based upon a set of long-wave initial conditions, and the error bounds can also be expressed in terms of pointwise estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.