Abstract
In just noticeable difference (JND) models, evaluation of contrast masking (CM) is a crucial step. More specifically, CM due to edge masking (EM) and texture masking (TM) needs to be distinguished due to the entropy masking property of the human visual system. However, TM is not estimated accurately in the existing JND models since they fail to distinguish TM from EM. In this letter, we propose an enhanced pixel domain JND model with a new algorithm for CM estimation. In our model, total-variation based image decomposition is used to decompose an image into structural image (i.e., cartoon like, piecewise smooth regions with sharp edges) and textural image for estimation of EM and TM, respectively. Compared with the existing models, the proposed one shows its advantages brought by the better EM and TM estimation. It has been also applied to noise shaping and visual distortion gauge, and favorable results are demonstrated by experiments on different images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.