Abstract
Just-in-time defect prediction (JITDP) research is increasingly focused on program changes instead of complete program modules within the context of continuous integration and continuous testing paradigm. Traditional machine learning-based defect prediction models have been built since the early 2000s, and recently, deep learning-based models have been designed and implemented. While deep learning (DL) algorithms can provide state-of-the-art performance in many application domains, they should be carefully selected and designed for a software engineering problem. In this research, we evaluate the performance of traditional machine learning algorithms and data sampling techniques for JITDP problems and compare the model performance with the performance of a DL-based prediction model. Experimental results demonstrated that DL algorithms leveraging sampling methods perform significantly worse than the decision tree-based ensemble method. The XGBoost-based model appears to be 116 times faster than the multilayer perceptron-based (MLP) prediction model. This study indicates that DL-based models are not always the optimal solution for software defect prediction, and thus, shallow, traditional machine learning can be preferred because of better performance in terms of accuracy and time parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.