Abstract
Observations have shown that there exists downward propagation of alternating westward/eastward jets in Jupiter’s equatorial stratosphere, with a quasi-period between 4 and 6 yr. This phenomenon is generally called the quasi-quadrennial oscillation (QQO). Here, we simulate the QQO by injecting isotropic small-scale thermal disturbances into a 3D general circulation model of Jupiter. It is found that the internal thermal disturbance is able to excite a wealth of waves that generate the equatorial QQO and multiple jet streams at the middle and high latitudes of both hemispheres. The dominant wave mode in generating the QQO-like oscillation is that with a zonal wavenumber of 10. The inhomogeneous evolution of potential vorticity favors the emergence of off-equatorial zonal jets. The off-equatorial jets migrate to the equator, strengthen the deep equatorial jets, and result in the prolonging of the QQO-like oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.