Abstract
AbstractJupiter's powerful auroral emission is usually divided into the polar, main, and equatorward components. The driver of Jupiter's main aurora is a central question for the community. Previous investigations reveal many distinct substructures on the main auroral oval, which are indicators of fundamentally different magnetospheric processes. Understanding these substructures could provide key constraints for uncovering the driver of Jupiter's main aurora emission. In this study, we show the evolution of a double‐auroral arc on the dawnside from observations by the Hubble Space Telescope (HST). Simultaneous in situ observations from the Juno spacecraft provide direct evidence of magnetic reconnection and magnetic dipolarization. By analyzing the datasets from Juno and HST, we suggest that the evolution of the double‐arc structure is likely a consequence of the non‐steady progress of magnetic reconnection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.