Abstract

An analysis of the structure of the Jovian atmosphere, primarily based on center-to-limb variations (CTLV) of the equivalent width of the hydrogen quadrupole 4-0 S (1) line, is presented. These data require that the atmosphere have regions of both long- and short- scattering mean free paths. Two alternative cloud structures which fit the data are developed. The first is a two-cloud model (TCM) consisting of a thin upper cloud and a lower semi-infinite cloud, with absorbing gas between the clouds and above the upper cloud. The second model is a reflecting-scattering model (RSM), in which a gas layer lies above a haze consisting of scattering particles and absorbing gas. The cloud-scattering phase function in both models must have a strong forward peak. The CTLV data require, however, the presence of a backscattering lobe on the phase function, with the backscattering intensity about 4% of the forward scattering. The decrease in reflectivity of all regions from the visible to the ultraviolet is explained by the presence of dust particles mixed with the gas. Most of the ultraviolet absorption in the atmosphere must occur above the upper cloud layer. Particles with a uniform distribution of radii from 0.0 to 0.1 μm with a complex index of refraction varying as λ −2.5 are used. The contrast in reflectivity between belts and zones may be explained by the larger concentration of dust in the belts than in the zones. Spatially resolved ultraviolet limb-darkening curves will help to determine the dust distribution of the Jovian atmosphere. The visible methane bands at λλ 6190, 5430, and 4860 Å are analyzed in terms of these models. We derive a methane-to-hydrogen mixing ratio of 2.8 × 10 −3 , which is about 4.5 times the value for solar composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call