Abstract
The performance and distribution of woody species strongly depend on their adjustment to environmental conditions based on genotypic and phenotypic properties. Since more intense and frequent drought events are expected due to climate change, xylem hydraulic traits will play a key role under future conditions, and thus, knowledge of hydraulic variability is of key importance. In this study, we aimed to investigate the variability in hydraulic safety and efficiency of the conifer shrub Juniperus communis based on analyses along an elevational transect and a common garden approach. We studied (i) juniper plants growing between 700 and 2000ma.s.l. Innsbruck, Austria, and (ii) plants grown in the Innsbruck botanical garden (Austria) from seeds collected at different sites across Europe (France, Austria, Ireland, Germany and Sweden). Due to contrasting environmental conditions at different elevation and provenance sites and the wide geographical study area, pronounced variation in xylem hydraulics was expected. Vulnerability to drought-induced embolisms (hydraulic safety) was assessed via the Cavitron and ultrasonic acoustic emission techniques, and the specific hydraulic conductivity (hydraulic efficiency) via flow measurements. Contrary to our hypothesis, relevant variability in hydraulic safety and efficiency was neither observed across elevations, indicating a low phenotypic variation, nor between provenances, despite expected genotypic differences. Interestingly, the provenance from the most humid and warmest site (Ireland) and the northernmost provenance (Sweden) showed the highest and the lowest embolism resistance, respectively. The hydraulic conductivity was correlated with plant height, which indicates that observed variation in hydraulic traits was mainly related to morphological differences between plants. We encourage future studies to underlie anatomical traits and the role of hydraulics for the broad ecological amplitude of J. communis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.