Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been identified as emerging contaminants of public health concern. With PFAS now detected globally in a wide range of environments, there is an urgent need for effective remedial treatment solutions at the field scale. Phytoremediation presents a potential remediation strategy for PFAS that would allow efficient and cost-effective remediation at large scales. This study examined the potential for the Australian native wetland plant Juncus sarophorus to tolerate, take up, and accumulate PFOS, PFOA and PFHxS. A 190-day glasshouse experiment was conducted, in which 0, 10 and 100 μg/L each of PFOS, PFOA and PFHxS were used to irrigate J. sarophorus in potted soil. The results suggest that J. sarophorus has a high tolerance to PFAS and is effective at accumulating and transferring PFHxS and PFOA from soils to above ground biomass. Together with its high growth rate, J. sarophorus appears to be, in principle, a suitable candidate for phytoextraction of short-chained PFAS compounds. It is, however, less efficient at uptake of PFOS, owing to the long chain-lengths of this compound and PFOSs' ability to sorb effectively to soils. The total accumulated PFAS mass at the end of the experiment was ~2000 μg/kg biota(wet weight) and ~170 μg/kg biota(wet weight) for soils irrigated with 100 μg/L and 10 μg/L for each PFAS compound, translating into overall PFAS removal rates of 11% and 9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.