Abstract

We investigate transport of spinless fermions through a single site dot junction of M one-dimensional quantum wires. The semi-infinite wires are described by a tight-binding model. Each wire consists of two parts: the non-interacting leads and a region of finite extent in which the fermions interact via a nearest-neighbor interaction. The functional renormalization group method is used to determine the flow of the linear conductance as a function of a low-energy cutoff for a wide range of parameters. Several fixed points are identified and their stability is analyzed. We determine the scaling exponents governing the low-energy physics close to the fixed points. Some of our results can already be derived using the non-self-consistent Hartree-Fock approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.