Abstract

In this paper, we present a novel junctionless nanowire tunneling FET (JN-TFET) in which the source region is divided into an n+ as well as a p+ type region. We will show that this structure can provide a built-in n-p-n bipolar junction transistor (BJT) action in the on state of the device. In this regime, tunneling of electrons from the source valence band into the channel conduction band enhances the hole concentration in the p+ source region. Also, the potential in this region is increased, which drives a built-in BJT transistor by forward biasing the base-emitter junction. Thus, the BJT current adds up to the normal tunneling current in the JN-TFET. Owing to the sharp switching of the JN-TFET and the high BJT current gain, the overall performance of the device, herein called “BJN-TFET,” is improved. On-state currents as high as 2.17 × 10−6 A/μm and subthreshold swings as low as ∼50 mV/dec at VDS = 1 V are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.