Abstract
Background context Biomechanical studies have demonstrated increased motion in motion segments adjacent to instrumentation or arthrodesis. The effects of different configurations of hook and pedicle screw instrumentation on the biomechanical behaviors of adjacent segments have not been well documented. Purpose To compare the effect of three different fusion constructs on adjacent segment motion proximal to lumbar arthrodesis. Methods Seven human cadaver lumbar spines were tested in the following conditions: 1) intact; 2) L4–L5-simulated circumferential fusion (CF); 3) L4–L5-simulated fusion extended to L3 with pedicle screws; and 4) L4–L5-simulated fusion extended to L3 with sublaminar hooks. Rotation data at L2–L3, L3–L4, and L4–L5 were analyzed using both load limit control (±7.5 N·m) and displacement limit control (truncated to the greatest common angular motion of the segments for each specimen). Results Both the L3–L4 and L2–L3 motion segments above the L4–L5-simulated CF had significantly increased motion in all loading planes compared with the intact spine, but no significant differences were found between L3–L4 and L2–L3 motion. When the L3–L4 segment was stabilized with pedicle screws, its motion was significantly smaller in flexion, lateral bending, and axial rotation than when stabilized with sublaminar hooks. At the same time, L2–L3 motion was significantly larger in flexion, lateral bending, and axial rotation in the pedicle screw model compared with the sublaminar hook construct. Conclusions The use of sublaminar hooks to stabilize the motion segment above a circumferential lumbar fusion reduced motion at the next cephalad segment compared with a similar construct using pedicle screws. The semiconstrained hook enhancement may be considered if a patient is at a risk of adjacent segment disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.