Abstract

Polycrystalline thin films of CuInSe 2 (CIS) were prepared by galvanic electrochemical (EC) and physical vapor deposition (PVD) methods and were characterized using high resolution photoluminescence at low temperatures to study defect states, scanning electron microscopy to study surface morphology, and transmission electron microscopy to determine the grain size and individual crystallographic orientation of the grains for possible correlation between the properties of the two films. Metal contacts, Schottky devices in the form of Al/p-CIS, and CdS/p-CIS heterostructures were also prepared. The electrical properties of the resulting interfaces were investigated using current-voltage ( I–V) and capacitance-voltage ( C–V) characteristics, and by electron-beam-induced current measurements. Devices prepared from PVD films exhibited a higher generation factor G, sharp interfaces and the lowest density of interface states. On the contrary, devices of low G values (made from EC films) showed a much higher density of interface states with a high density of both shallow and deep traps, as detected by deep level transient spectroscopy. The results were used to correlate the resulting variation in the heterojunction characteristics and back contact behavior with the corresponding defect states dominating the CIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.