Abstract

We work out the junction conditions for f(R) gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of general relativity and from their metric f(R) counterparts. In particular, we find that the trace of the stress–energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini f(R) framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.