Abstract

A general processing framework for urban road network extraction in high-resolution synthetic aperture radar images is proposed. It is based on novel multiscale detection of street candidates, followed by optimization using a Markov random field description of the road network. The latter step, in the path of recent technical literature, is enriched by the inclusion of a priori knowledge about road junctions and the automatic choice of most of the involved parameters. Advantages over existing and previous extraction and optimization procedures are proved by comparison using data from different sensors and locations

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.