Abstract

In this paper, we investigated the characteristics of Ge junction diodes and gate-last p- and n-metal-oxide-semiconductor field-effect transistors with the atomic-layer-deposited- Al2O3 gate dielectrics. The magnitudes of the rectifying ratios for the Ge p+-n and n+-p junctions exceeded three and four orders of magnitude (in the voltage range of plusmn1 V), respectively, with accompanying reverse leakages of ca. 10-2 and 10-4 A ldr cm-2, respectively. The site of the primary leakage path, at either the surface periphery or junction area, was determined by the following conditions: 1) the thermal budget during dopant activation, and 2) whether forming gas annealing (FGA) was employed or not. In addition, performing FGA at 300degC boosted the device on-current, decreased the Al2O3/Ge interface states to 8 times 1011 cm-2 ldr eV-1, and improved the reliability of bias temperature instability. The peak mobility and on/off ratio reached as high as 225 cm2 ldr V-1 ldr s-1 and > 103, respectively, for the p-FET (W/L = 100 mum/4 mum), while these values were less than 100 cm2 ldr V-1 ldr s-1 and ca. 103, respectively, for the n-FET (W/L = 100 mum/9 mum). The relatively inferior n-FET performance resulted from the larger source/drain contact resistance, higher surface states scattering, and lower substrate-doping concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.