Abstract
Estrogen is critical to both normal mammary gland and breast cancer development. Circulating levels of estrogen in premenopausal women are primarily determined by the action of aromatase in ovarian granulosa cells that converts testosterone to estradiol. In the current study, we unraveled an important role of Jun proteins in modulating ovary-specific aromatase expression. Ectopic expression of the Jun proteins in a human granulosa cell line significantly inhibited an ovary-specific promoter (PII) of the aromatase gene, whereas expression of dominant-negative mutants of Jun led to increased promoter activity. The Jun-mediated repression was specific to the aromatase promoter, as Jun proteins stimulated known AP1-responsive promoters in the same cellular context. Both the activation and basic leucine zipper domains of Jun were required for the transcriptional repression. Electrophoretic gel mobility assay showed that endogenous Jun proteins bound to a functionally important cAMP-responsive element (CRE) in the PII promoter-proximal region. Alteration of the CRE-like site impaired both the cAMP-responsive transcriptional activation and Jun-mediated repression. Furthermore, chromatin immunoprecipitation indicated the presence of cJun at the proximal region of the native PII promoter. Taken together, our work suggests that Jun proteins may attenuate estrogen biosynthesis by directly downregulating transcription of the aromatase gene in ovarian granulosa cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.