Abstract

Recent studies revealed that the MEK/ERK module of the mitogen-activated protein kinase (MAPK) signaling cascades is up-regulated in the early stages of 1alpha,25-dihydroxyvitamin D(3) (1,25D(3))-induced monocytic differentiation of human leukemia cells HL60. In the present study, we investigated whether another MAPK module, the JNK pathway, also participates in this form of differentiation. We found that the dependence on the concentration of the inducer, the vitamin-hormone 1,25D(3), in two types of human leukemia cells, HL60 and U937, and the kinetics of monocytic differentiation in HL60 cells, parallel the degree of the activation of the JNK pathway. A blockade of JNK signaling by a stable expression of dominant negative (dn) JNK1 mutant in U937 cells resulted in reduced c-jun phosphorylation, and the differentiation of these cells was markedly decreased. Similarly, inhibition of JNK1 and JNK2 activities by the selective inhibitor SP600125 led to both dose-dependent reduction of c-jun and ATF-2 phosphorylation, and of the differentiation of HL60 cells. In addition, we found that JNK activity is essential for the AP-1 DNA binding induced by 1,25D(3) in HL60 and U937 cells. The results indicate that in cultured human leukemia cells, the JNK pathway participates in the induction of monocytic differentiation by 1,25D(3), probably by activating the AP-1 transcription factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.