Abstract

Neuropathic pain (NP) is a complex disorder caused by lesions or diseases affecting the somatosensory nervous system, severely impacting patients' quality of life. Recent studies suggest ferroptosis may be involved in NP induction, but its precise mechanisms remain unclear. We used GO and KEGG pathway enrichment analyses to functionally annotate ferroptosis-related differentially expressed genes (FRDs). Through STRING and the maximum cluster centrality (MCC) algorithm, we identified five hub FRDs (Jun, Timp1, Egfr, Cdkn1a, Cdkn2a). Single-cell analysis revealed significant expression of Jun and Timp1 in neurons. Our study confirmed the association between ferroptosis and endoplasmic reticulum stress (ERS) in NP and validated changes in hub FRD expression across various NP animal models. In vitro experiments demonstrated that Jun regulates neuronal ferroptosis and ERS, particularly by modulating Timp1 expression. Transcription factor prediction and JASPAR binding site analysis elucidated the regulatory network involving Jun. ROC curve analysis of external datasets highlighted the diagnostic potential of hub FRDs and ERS-related differentially expressed genes (ERSRDs) in NP. Using the Comparative Toxicogenomics Database (CTD), we identified estradiol (E2) as a potential therapeutic drug targeting hub FRDs and ERSRDs. Molecular docking predicted its binding sites with Jun and Timp1, and in vivo experiments confirmed that E2 alleviated NP and reversed the expression of Jun and Timp1. This study underscores the crucial role of Jun and Timp1 in the interplay between ferroptosis and ERS, offering new insights and promising avenues for NP treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.