Abstract

This paper presents a bio-inspired design of a jumping mini robot including the theoretical analysis on jumping dynamics based on a simplified biological model, the dynamically optimized saltatorial leg design, the overall design of the jumping robot prototype and, as a part of the bio-mimetic research, and the measuring and comparing of the jumping characteristics between the robot and animal. The artificial saltatorial leg is designed to imitate the characteristics of a real jumping insect, kinematically and dynamically, and proposed to reduce the contact force at tarsus–ground interface during jumping acceleration thus optimizes the jumping motion by minimizing the risk of both leg ruptures and tarsus slippage. Then by means of high speed camera experiment, the jumping characteristics of the theoretical jumping model, the jumping insect leafhopper and the robot are compared so as to show the dynamic similarity and optimization results among them. The final energy integrated jumping robot prototype is able to accomplish a movement of continuous jumping, of which a single jumping reaches 100mm high and 200mm long, about twice and four times of its body length respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.