Abstract

Spiders use hemolymph pressure to extend their legs. This mechanism should be challenged when required to rapidly generate forces during jumping, particularly in large spiders. However, effective use of leg muscles could facilitate rapid jumping. To quantify the contributions of different legs and leg joints, we investigated jumping kinematics by high-speed video recording. We observed two different types of jumps following a disturbance: prepared and unprepared jumps. In unprepared jumps, the animals could jump in any direction away from the disturbance. The remarkable directional flexibility was achieved by flexing the legs on the leading side and extending them on the trailing side. This behaviour is only possible for approximately radial-symmetric leg postures, where each leg can fulfil similar functions. In prepared jumps, the spiders showed characteristic leg positioning and the jumps were directed anteriorly. Immediately after a preliminary countermovement in which the centre of mass was moved backwards and downwards, the jump was executed by extending first the fourth and then the second leg pair. This sequence provided effective acceleration to the centre of mass. At least in the fourth legs, the hydraulic and the muscular mechanism seem to interact to generate ground reaction forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call