Abstract

This paper considers multidimensional jump type stochastic differential equations with super linear and non-Lipschitz coefficients. After establishing a sufficient condition for nonexplosion, this paper presents sufficient local non-Lipschitz conditions for pathwise uniqueness. The non-confluence property for solutions is investigated. Feller and strong Feller properties under local non-Lipschitz conditions are investigated via the coupling method. Sufficient conditions for irreducibility and exponential ergodicity are derived. As applications, this paper also studies multidimensional stochastic differential equations driven by Lévy processes and presents a Feynman–Kac formula for Lévy type operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.