Abstract

AbstractSolid electrolytes with structural disorder generally exhibit characteristic deviations from standard-theory spectra. The effect is known as “universal” dynamic response. In the jump-relaxation model, the phenomena are consistently explained in terms of the non-random hopping resulting from the repulsive Coulomb interaction among the mobile ions. In previous stages of the development of the model, the treatment required either crude approximations or extensive numerical calculations. Now. however, we are able to present, for the first time. simple analytic expressions for the relevant time correlation functions, derived from the rate equations of the model. In particular, the dependence of the ionic conductivity on frequency and temperature is now expressed by a simple equation. Furthermore, we recover the Kohlrausch-Williams- Watts behavior and find the KWW exponent. β. and the mismatch parameter of our model, α. to be identical. The validity of the KWW law is shown to be limited to the dispersive regime on the frequency and time scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.