Abstract

A nonlocal high-frequency method for measuring the dynamic complex magnetic permeability with enhanced spatial resolution is developed to simultaneously determine the bulk and local character of stepwise penetration of a magnetic flux through twin boundaries (TBs) into a YBa2Cu3O7-x HTSC sample during its stepwise decomposition into twins. By the values of fields corresponding to the regions of steps, the thermodynamic first critical magnetic fields are determined: the penetration of a flux into a sample --- a Josephson medium; the development of a critical state in the Josephson medium; the penetration of a flux into twins; and the values of the critical fields of phase transitions in the vortex system of the HTSC sample, such as the melting fields of a vortex crystal, the formation of a superconducting glass state in the sample, and the transition to the vortex glass and Bragg glass states. Keywords: high-frequency inductance, bulk and local dynamic complex magnetic permeability, magnetic flux trapping, effective demagnetization factor, twins (monodomains, crystallites, sub- and nanocrystallites), twin boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call