Abstract

Jump penalty stabilization techniques for under-resolved turbulence have been recently proposed for continuous and discontinuous high order Galerkin schemes [1–3]. The stabilization relies on the gradient or solution discontinuity at element interfaces to incorporate localised numerical diffusion in the numerical scheme. This diffusion acts as an implicit subgrid model and stabilizes under-resolved turbulent simulations.This paper investigates the effect of jump penalty stabilization methods (penalising gradient or solution) for stabilization and improvement of high-order discontinuous Galerkin schemes in turbulent regime. We analyze these schemes using an eigensolution analysis, a 1D non-linear Burgers equation (mimicking a turbulent cascade) and 3D turbulent Navier-Stokes simulations (Taylor-Green Vortex and Kelvin-Helmholtz Instability problems).We show that the two jump penalty stabilization techniques can stabilize under-resolved simulations thanks to the improved dispersion-dissipation characteristics (when compared to non-penalized schemes) and provide accurate results for turbulent flows. The numerical results indicate that the proposed jump penalty methods stabilize under-resolved simulations and improve the simulations, when compared to the original unpenalized scheme and to classic explicit subgrid models (Smagorinsky and Vreman).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.