Abstract

In previous works, by importing ideas from game semantics (notably Faggian–Maurel–Curien'sludics nets), we defined a new class of multiplicative/additive polarized proof nets, calledJ-proof nets. The distinctive feature of J-proof nets with respect to other proof net syntaxes, is the possibility of representing proof nets which are partially sequentialized, by usingjumps(that is, untyped extra edges) as sequentiality constraints. Starting from this result, in the present work, we extend J-proof nets to the multiplicative/exponential fragment, in order to take into account structural rules: More precisely, we replace the familiar linear logic notion of exponential box with a less restricting one (calledcone) defined by means of jumps. As a consequence, we get a syntax for polarized nets where, instead of a structure of boxes nested one into the other, we have one of cones which can bepartially overlapping. Moreover, we define cut-elimination for exponential J-proof nets, proving, by a variant of Gandy's method, that even in case of ‘superposed’ cones, reduction enjoys confluence and strong normalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.