Abstract

Three-dimensional trabecular architecture was investigated in the femora of tail-suspended young growing rats, and the effects of jump exercise during remobilization were examined. Five-week-old male Wistar rats (n = 35) were randomly assigned to five body weight-matched groups: tail-suspended group (SUS; n = 7); sedentary control group for SUS (S(CON); n = 7); spontaneous recovery group after tail suspension (S+R(CON), n = 7); jump exercise group after tail suspension (S+R(JUM); n = 7); and age-matched control group for S+R(CON) and S+R(JUM) without tail suspension and exercise (S(CON)+R(CON); n = 7). Rats in SUS and S(CON) were killed immediately after tail suspension for 14 days. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, and jump height was 40 cm. Bone mineral density (BMD) of the femur and three-dimensional trabecular bone architecture at the distal femoral metaphysis were measured. Tail suspension induced a 13.6% decrease in total femoral BMD (P < 0.001) and marked deterioration of trabecular architecture. After 5 wk of free remobilization, femoral BMD, calf muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. On the other hand, S+R(JUM) rats showed significant increases in trabecular thickness, number, and connectivity compared with S+R(CON) rats (62.8, 31.6, and 24.7%, respectively; P < 0.05), and these parameters of trabecular architecture returned to the levels of S(CON)+R(CON). These results indicate that suspension-induced trabecular deterioration persists after remobilization, but jump exercise during remobilization can restore the integrity of trabecular architecture and bone mass in the femur in young growing rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.