Abstract

This paper studies a class of tractable jump-diffusion models, including stochastic volatility models with various specifications of jump intensity for stock returns and variance processes. We employ the Markov chain Monte Carlo (MCMC) method to implement model estimation, and investigate the performance of all models in capturing the term structure of variance swap rates and fitting the dynamics of stock returns. It is evident that the stochastic volatility models, equipped with self-exciting jumps in the spot variance and linearly-dependent jumps in the central-tendency variance, can produce consistent model estimates, aptly explain the stylized facts in variance swaps, and boost pricing performance. Moreover, our empirical results show that large self-exciting jumps in the spot variance, as an independent risk source, facilitate term structure modeling for variance swaps, whilst the central-tendency variance may jump with small sizes, but signaling substantial regime changes in the long run. Both types of jumps occur infrequently, and are more related to market turmoils over the period from 2008 to 2021.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call