Abstract

This paper considers a portfolio optimization problem in which asset prices are represented by SDEs driven by Brownian motion and a Poisson random measure, with drifts that are functions of an auxiliary diffusion factor process. The criterion, following earlier work by Bielecki, Pliska, Nagai, and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance). By using a change of measure technique introduced by Kuroda and Nagai we show that the problem reduces to solving a certain stochastic control problem in the factor process, which has no jumps. The main result of this paper is to show that the risk-sensitive jump-diffusion problem can be fully characterized in terms of a parabolic Hamilton–Jacobi–Bellman PDE rather than a partial integro-differential equation, and that this PDE admits a classical $(C^{1,2})$ solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.