Abstract

Perceptual judgments are an essential mechanism for our everyday interaction with other moving agents or events. For instance, estimation of the time remaining before an object contacts or passes us is essential to act upon or to avoid that object. Previous studies have demonstrated that participants use different cues to estimate the time to contact or the time to passage of approaching visual stimuli. Despite the considerable number of studies on the judgment of approaching auditory stimuli, not much is known about the cues that guide listeners’ performance in an auditory Time-to-Passage (TTP) task. The present study evaluates how accurately participants judge approaching white-noise stimuli in a TTP task that included variable occlusion periods (portion of the presentation time where the stimulus is not audible). Results showed that participants were able to accurately estimate TTP and their performance, in general, was weakly affected by occlusion periods. Moreover, we looked into the psychoacoustic variables provided by the stimuli and analysed how binaural cues related with the performance obtained in the psychophysical task. The binaural temporal difference seems to be the psychoacoustic cue guiding participants’ performance for lower amounts of occlusion, while the binaural loudness difference seems to be the cue guiding performance for higher amounts of occlusion. These results allowed us to explain the perceptual strategies used by participants in a TTP task (maintaining accuracy by shifting the informative cue for TTP estimation), and to demonstrate that the psychoacoustic cue guiding listeners’ performance changes according to the occlusion period.

Highlights

  • Temporal estimations underlie many functional interactions with moving objects

  • Since our stimuli consisted of a broadband sound source presented in the sagittal plane, we considered that the psychoacoustic cues most relevant for analysis would be the binaural cues of interaural level difference (ILD) and interaural time difference (ITD)

  • We found that the precision in estimating the time to passage of a sound increases for final distance as a function of the amount of occlusion, which is analogous to the tendency for a better quality of the fit for ITDfinal as the amount of occlusion increases

Read more

Summary

Introduction

Temporal estimations underlie many functional interactions with moving objects. POCI-01-0145-FEDER-007043 and FCT – Fundacão para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.