Abstract

A spectroscopic Judd–Ofelt investigation has been performed on Er3+ in the doubly doped phosphate glass:Er3+, Yb3+ in order to assess its potential as a laser system. The standard Judd–Ofelt model was applied to the room-temperature absorption intensities of Er3+(4f11) transitions to determine the intensity parameters: Ω2=6.28×10−20 cm2, Ω4=1.03×10−20 cm2, and Ω6=1.39×10−20 cm2 in the phosphate glass host. The intensity parameters are used to determine the radiative decay rates (emission probabilities of transitions) and branching ratios of the Er3+ transitions from the excited-state J manifolds to the lower-lying J′ manifolds. The radiative lifetimes of these excited states are determined from the radiative decay rates. The predicted decay rates and radiative lifetimes are compared to those of Er3+ transitions in other glass hosts. The quantum efficiency of the eye-safe laser transition I13/24→4I15/2 (1.54 μm) of Er3+ is approximately 80% in the phosphate glass host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.