Abstract

To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call