Abstract

We study the thermal partition function of Jackiw-Teitelboim (JT) gravity in asymptotically Euclidean AdS2 background using the matrix model description recently found by Saad, Shenker and Stanford [arXiv:1903.11115]. We show that the partition function of JT gravity is written as the expectation value of a macroscopic loop operator in the old matrix model of 2d gravity in the background where infinitely many couplings are turned on in a specific way. Based on this expression we develop a very efficient method of computing the partition function in the genus expansion as well as in the low temperature expansion by making use of the Korteweg-de Vries constraints obeyed by the partition function. We have computed both these expansions up to very high orders using this method. It turns out that we can take a low temperature limit with the ratio of the temperature and the genus counting parameter held fixed. We find the first few orders of the expansion of the free energy in a closed form in this scaling limit. We also study numerically the behavior of the eigenvalue density and the Baker-Akhiezer function using the results in the scaling limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.