Abstract
ABSTRACTThe paper is focused on a comprehensive study of JRQ and JPA reactor pressure vessel steels from the positron annihilation lifetime spectroscopy (PALS) point of view. Based on our more than 20 years’ experience with characterization of irradiated reactor steels, we confirmed that defects after irradiation start to grow and/or merge into bigger clusters. Experimental results shown that JPA steel is more sensitive to the creation of irradiation-induced defects than JRQ steel. It is most probably due to high copper content (0.29 wt.% in JPA) and copper precipitation has a major impact on neutron-induced defect creation at the beginning of the irradiation. Based on current PALS results, no large vacancy clusters were formed during irradiation, which could cause dangerous embrittlement concerning operation safety of nuclear power plant. The combined PALS, small angle neutron scattering and atomic probe tomography studies support the model for JRQ and JPA steels describing the structure of irradiation-induced clusters as agglomerations of vacancy clusters (consisting of 2–6 vacancies each) and are separated from each other by a distribution of atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.