Abstract
AbstractWe compare Hubble Space Telescope observations of Jupiter's FUV auroras with contemporaneous conjugate Juno in situ observations in the equatorial middle magnetosphere of Jupiter. We show that bright patches on and equatorward of the main emission are associated with hot plasma injections driven by ongoing active magnetospheric convection. During the interval that Juno crossed the magnetic field lines threading the complex of auroral patches, a series of energetic particle injection signatures were observed, and immediately prior, the plasma data exhibited flux tube interchange events indicating ongoing convection. This presents the first direct evidence that auroral morphology previously termed “strong injections” is indeed a manifestation of magnetospheric injections, and that this morphology indicates that Jupiter's magnetosphere is undergoing an interval of active iogenic plasma outflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.