Abstract

AbstractThe low‐altitude, high‐velocity trajectory of the Juno spacecraft enables the Jovian Auroral Distributions Experiment to make the first in situ observations of the high‐latitude ionospheric plasma. Ions are observed to energies below 1 eV. The high‐latitude ionospheric ions are observed simultaneously with a loss cone in the magnetospheric ions, suggesting precipitating magnetospheric ions contribute to the heating of the upper ionosphere, raising the scale height, and pushing ionospheric ions to altitudes of 0.5 RJ above the planet where they are observed by Jovian Auroral Distributions Experiment. The source of the magnetospheric ions is tied to the Io torus and plasma sheet, indicated by the cutoff seen in both the magnetospheric and ionospheric plasma at the Io M‐shells. Equatorward of the Io M‐shell boundary, the ionospheric ions are not observed, indicating a drop in the scale height of the ionospheric ions at those latitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.