Abstract

The occultation of the star Beta Scorpii by Jupiter was observed at high time resolution in three wavelength channels. The results imply a temperature of 220 degrees K at an altitude in the Jovian atmosphere corresponding to 10(14) molecules per cubic centimeter, and temperature fluctuations of 2 degrees to 10 degrees K over vertical scales of 2 to 10 kilometers. They suggest that the vertical eddy diffusion coefficient near the turbopause has a lower limit of 7 x 10(5)K square centimeters per second, and that the turbopause lies above the altitude where the density is 5 x 10(13) molecules per cubic centimeter. Below the turbopause, the ratio of hydrogen to helium is consistent with cosmic abundances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.