Abstract

Aim: The rapid growth in the number of ground users over recent years has introduced the issues for a base station of providing more reliable connectivity and guaranteeing the reasonable quality of service (QoS). Thanks to the unique features of unmanned aerial vehicles (UAVs), such as flexibility in deployment, large coverage range and lower cost, UAVs can help the base station to provide wireless connectivity to the ground users, e.g., in rural and remote areas. As the energy limitation is the main concern for UAVs, the motivation is to provide uninterrupted connection to ground users in the next generation wireless networks using solar powered UAV-assisted air networks. Methods: The research uses global horizontal irradiance (GHI) data from the National Renewable Energy Laboratory, small cell power ratings for communication, and UAV parameters. In addition, the TensorFlow library and Python programming language were also used to develop machine learning models and simulate the UAV flying time. Results: In this paper, we develop a novel resource management system for UAVs, which consists of an energy harvesting deep learning model to predict the future power harvested from the solar panel and a consumption model which determines user arrival rate. With energy consumption and harvesting predictions, the resource management system adaptively switches the power consumed by a UAV for communication. In addition, based on the future energy availability and user's arrival rate, the resource management system communicates with other UAVs and enables energy coordinating scheduling among multiple UAVs to support user communications. The experiment results demonstrate that by using adaptive energy scheduling among UAVs, the flying time of the UAVs is improved by 40% during nighttime and by 37% when performing energy coordination among multiple UAVs. Conclusion: In this work, the UAV based communications have been researched. To understand more about UAVs and air segments, some literature review has been done based on previous works. Finally, alteration of the transmission power using several methodologies has been accomplished to increase the flying time of the UAV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call