Abstract
A super thin elastic rod is modeled with a background of DNA super coiling structure, and its dynamics is discussed based on the Jourdain variation. The cross section of the rod is taken as the object of this study and two velocity spaces about arc coordinate and the time are obtained respectively. Virtual displacements of the section on the two velocity spaces are defined and can be expressed in terms of Jourdain variation. Jourdain principles of a super thin elastic rod dynamics on arc coordinate and the time velocity space are established, respectively, which show that there are two ways to realize the constraint conditions. If the constitutive relation of the rod is linear, the Jourdain principle takes the Euler–Lagrange form with generalized coordinates. The Kirchhoff equation, Lagrange equation and Appell equation can be derived from the present Jourdain principle. While the rod subjected to a surface constraint, Lagrange equation with undetermined multipliers may be derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.