Abstract
Joule heating can instantaneously achieve high temperatures (>2000 °C) by applying electrical current on a resistive material. This ohmic heating by the passage of an electric current through a conducting domain may effectively heal the defective sites (i.e., vacancies, structural defects, and sp3 oxygen groups) of graphene oxide (GO) and revert them into sp2 domains. Indeed, the direction of electric field controls the texture of GO with preferential alignment, which significantly affects the transport properties along the fiber axis. Here we present electrical current-induced manipulation of resistive domain (i.e. Joule heating) as an effective healing method for the defect sites in GO fibers (GOFs). Systematic control of input current restores the sp2 lattice structures within fibers in a well-controlled manner. Structural evolution mechanism is proposed for multilayer stacked graphitic structures as well as graphene sheet plane under the reduction process. This defect-healing principle is rapid, environmentally benign and energy efficient, compared to other defect restoration methods, and yields tailored-aligned fibers with a high current-carrying capability and facile charge transport, which is potentially beneficial for power cables and other relevant applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.