Abstract

The model described in this paper is an approach to simulating flow through porous media on a microscopic scale. It is based on a variation of diffusion limited aggregation. The model is shown to match coreflood average saturation profiles and production histories as predicted by Darcy's equations while generating saturation distributions resembling viscous fingering. The model also is shown to simulate the limiting cases of infinite mobility ratio and zero flow rates as previously modeled by diffusion limited aggregation and percolation theory. With some simplifying assumptions, differential equations very similar to Darcy's equations are derived from the microscopic interpretation of fluid behavior in porous media used in this model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call