Abstract

A 1D Josephson junction (JJ) loop, doped with a spin-flipper and attached to two thermal reservoirs is shown to operate as a heat engine, or a refrigerator, or a Joule pump or even as a cold pump. When operating as a quantum heat engine, the efficiency of this device exceeds that of some recent Josephson heat engine proposals. Further, as a quantum refrigerator, the coefficient of performance of this device is much higher than previously proposed JJ based refrigerators. In addition, this device can be tuned from engine mode to refrigerator mode or to any other mode, i.e., Joule pump or cold pump by either tuning the temperature of reservoirs, or via the flux enclosed in the JJ loop. In presence of spin flip scattering we can tune our device from engine mode to other operating modes by only changing the enclosed flux in JJ loop without changing the temperatures of the reservoirs. This is potentially an advantage with respect to other proposals. This makes the proposed device much more versatile as regards possible applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.