Abstract

We have fabricated weakly coupled intergrain nanobridges from MgB2 films by a focused ion beam (FIB) patterning technique and studied their transition properties. The bridges were nominally 300 nm wide and 100 nm long, and crossed a single grain boundary perpendicularly. The temperature-dependent resistance data showed a two-step transition after FIB pattern with more-than-two-decade increase in the resistivity. Current-voltage curves showed the characteristics of an ideal Josephson junction. The measured data were perfectly matched with the theory of the resistively shunted junction model with thermal fluctuations at all measured temperatures. At 4.2 K, the measured data showed the effect of hysteresis in agreement with the estimated McCumber parameter βc>0.3. The hysteresis effect disappeared above 6 K. The critical currents obtained from fitting to the RSJ model were linearly dependent on temperature, implying that the grain boundary played an insulating barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.