Abstract

We study a quantum Hall bilayer system of bosons at total filling factor $\nu = 1$, and study the phase that results from short ranged pair-tunneling combined with short ranged interlayer interactions. We introduce two exactly solvable model Hamiltonians which both yield the coupled Moore-Read state [Phys.~Rev.~Lett.~{\bf 108}, 256809 (2012)] as a ground state, when projected onto fixed particle numbers in each layer. One of these Hamiltonians describes a gapped topological phase while the other is gapless. However, on introduction of a pair tunneling term, the second system becomes gapped and develops the same topological order as the gapped Hamiltonian. Supported by the exact solution of the full zero-energy quasihole spectrum and a conformal field theory approach, we develop an intuitive picture of this system as two coupled composite fermion superconductors. In this language, pair tunneling provides a Josephson coupling of the superconducting phases of the two layers, and gaps out the Goldstone mode associated with particle transport between the layers. In particular, this implies that quasiparticles are confined between the layers. In the bulk, the resulting phase has the topological order of the Halperin 220 phase with $U(1)_2\times U(1)_2$ topological order, but it is realized in the symmetric/antisymmetric-basis of the layer index. Consequently, the edge spectrum at a fixed particle number reveals an unexpected $U(1)_4 \times U(1)$ structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.