Abstract

A map $\Phi$ is a Jordan triple product (JTP for short) homomorphism whenever $\Phi(A B A)= \Phi(A) \Phi(B) \Phi(A)$ for all $A,B$. We study JTP homomorphisms on the set of upper triangular matrices $\mathcal{T}_n(\mathbb{F})$, where $\Ff$ is the field of real or complex numbers. We characterize JTP homomorphisms $\Phi: \mathcal{T}_n(\mathbb{C}) \to \mathbb{C}$ and JTP homomorphisms $\Phi: \mathbb{F} \to \mathcal{T}_n(\mathbb{F})$. In the latter case we consider continuous maps and the implications of omitting the assumption of continuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.