Abstract

It has long been known that the quadratic term in the degree of the colored Jones polynomial of a knot is bounded above in terms of the crossing number of the knot. We show that this bound is sharp if and only if the knot is adequate.As an application of our result we determine the crossing numbers of broad families of non-adequate prime satellite knots. More specifically, we exhibit minimal crossing number diagrams for untwisted Whitehead doubles of zero-writhe adequate knots. This allows us to determine the crossing number of untwisted Whitehead doubles of any amphicheiral adequate knot, including, for instance, the Whitehead doubles of the connected sum of any alternating knot with its mirror image.We also determine the crossing number of the connected sum of any adequate knot with an untwisted Whitehead double of a zero-writhe adequate knot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.